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The Effect of Complex Modes
at Finline Discontinuities

ABBAS SAYED OMAR, MEMBER, IEEE, AND KLAUS F. SCHUNEMANN, SENIOR MEMBER, IEEE

Abstract —The effect of ignoring complex modes on the solution of

finiine discontinuity problems is investigated. It is shown that the modal

energy distribution at both sides of the discontinuity may be greatly

affected by overlooking complex modes, even if they are not strongly

excited. lt is also shown that disregarding only one mode of a pair of

complex modes, while taking the other into account, results in a contradic-

tion to the principle of complex power continuity across the discontinuity

plane. Comparison to measured data is also given to justify the validity of

the numerical results.

I. INTRODUCTION

T

HE ANALYSIS of discontinuities between planar

transmission lines, in particular microstrip lines and

finlines, has received increasing interest [1]-[7]. A proper

modeling of such discontinuities is of fundamental impor-

tance for any successful prhted-circuit design. Only finline

discontinuity problems will be considered here. Extending

the discussion to other planar structures is, however,

straightforward.

Two rigorous approaches have been reported for the

analysis of finline discontinuity problems. The first one

depends on the transverse resonance concept (e.g., [1]-[3]).

A determination of high-order finline modes is not needed

for this approach. The problem is completely formulated

in terms of homogeneously filled rectangular (or parallel-

plate) waveguide modes in conjunction with a proper

modeling of the tangential field in the metallization plane.

This method inherently shows some disadvantages: The

effect of the discontinuity is only available with respect to

the dominant mode. No information concerning higher

order modes can be obtained. A complex discontinuity,

which is composed of a number of cascaded simple discon-

tinuities (e.g. steps in the slot width), has then to be

analyzed “as a whole.” The properties of the individual

simple discontinuities cannot, in general, be used to con-

struct an accurate solution of the complex discontinuity

due to the lack of information about high-order modes.
The “as a whole” analysis of complex discontinuities may

need a large number of basis functions to properly model

the tangential field in the plane of the fins. This leads to

dealing with oversized matrices, which greatly degrades the

numerical efficiency of the method.
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The second approach depends on the modal expansion

concept (e.g. [4]–[6]). It is an application of the method of

moments, in which both the basis and the testing functions

are the electromagnetic fields of the normal modes of

propagation at both sides of the discontinuity. Another

choice of basis and testing functions has been suggested in

[7] following the method which has been presented in [8].

In the authors’ opinion, modal fields are in general the

best choice for basis and testing functions, because they

individually satisfy the same equations (Maxwell’s equa-

tions) and boundary conditions for the expanded field.

Continuity of complex power across the discontinuity plane

and hence the unitarity of the scattering matrix are also

guaranteed in the modal expansion method, as has been

shown in [5]. Generalized scattering and/or transmission

matrices, which contain all information about the domi-

nant as well as the higher order modes, are obtained for

simple discontinuities (e.g. steps). Complex discontinuities

can be analyzed by processing the generalized scattering or

transmission matrices characterizing the individual simple

steps. The main problem in this method, then, is the

accurate determination of an approximately complete set

of finline modes.

As has already been shown [9], the singular integral

equation (SIE) technique is very efficient for determining

such a set. It has also been shown that complex modes can

be supported by firdines, so that ignoring these modes in

constructing an approximately complete set of finline

modes may lead to erroneous solutions.

The possibility of complex modes in a circular wave-

guide containing a coaxial dielectric rod were first predic-

ted in [10]. It has been shown there that the appearance of

a backward-wave mode in a certain frequency band is

associated with the appearance of complex modes in a

lower frequency band. It has also been shown that com-

plex modes can occur under certain conditions even if

there is no frequency range in which backward-wave modes

can propagate. More theoretical and experimental inves-

tigations on complex modes in dielectric-loaded circular

waveguides have been reported, e.g. in [11]–[14].

Complex modes in a shielded rectangular dielectric image

guide, which can be considered as a rectangular waveguide

with a rectangular dielectric insert, have been reported in

[15] and [16]. We have recently shown that complex modes

can exist in finlines [9], [17].

This paper addresses the effect of overlooking complex

modes on the solution of finline discontinuity y problems.
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respectively, and J, is the induced surface current at

(Sl – S2). Two error quantities F~lJ and F~lJ can now be

defined as

/
F(l) = (Ry XHm). ds

e
s~

‘o —------z
Fig. 1. A boundary-reduction discontinuity between two general wave-

~Jl) =
J( )“

E(l) X R$) &. (4)

guides. s,

II. ,BASIC FORMULATION

The formulation of the modal expansion method is well

documented in the literature and can be found in, e.g., [18]

and [19] for homogeneously filled waveguides and in [5]

for inhomogeneously filled waveguides. The describing

equations can be equally obtained as a result of mini-

mizing certain error quantities, as will be shown in the

following.

Consider the boundary reduction ~iscontinuity which is

shown in Fig. 1. Waveguides 1 and 2 are assumed to be

quite general, except for the restriction that both have

discrete modal spectra; this simplifies the discussion to

some extent, because all field expansions include in this

case only summations and no integrations. Expanding the

transverse fields of guides 1 and 2 at the discontinuity

plane z = ZO with respect to N-d~mensional and M-dimen-

sional sets, respectively, of their modes results in

N

~=1

M

where e~l) (h ~1)) and e~)(h ~) ) are the transverse electric

(magnetic)-field vectors of the nth mode in guide 1 and the

m th mode in guide 2, respectively, and V~l), 1:1), VJ2), and

1(2) are expansion coefficients. Looking from side 1, the

e~rors R$) and R!) in the electric and magnetic fields,

respectively, are given by

The error quantity F1l) contains the unknown surface

current J,, and hence will not be used, in order not to

increase the number of unknowns. The error quantity F~l)

can be regarded as a functional of lZ (1) which must be

minimized. This means that the expansion coefficients 1~1)

of H@) must be adjusted in order to minimize F~l).

Substituting (1) and (3) into (4) and carrying out the

necessary integrations, one obtains

where

(6)

(7)

and 6.., is the Kronecker delta. Performing the usual

Fourier expansion procedure by differentiating F~l) with

respect to 1:1) (n =1,2,. -. , N) and equating the result to

zero, one obtains

[AP]FD=[A]P2’ (8)

where [ AP ] is an (N X N) diagonal matrix with elements
P.; [A] is an (N X ~) matrix with elements A .~; and V(l)

(V(2)) is an N(M)-dirnensional column vector with ele-

ments V~1)(VJ2)).

Looking from side 2, the errors in the electric and

magnetic fields are given by

R(z) = E(z) – E(1)

R~z) =~(z) _~(l) (9)

Again, two error quantities can be defined, namely

JFj2) = (E(2) xR~)).ds. (lo)
S2

(E(l) – E(2) on (S2)
R?) = The error quantities F~2) and F~2) can be regarded as

~ (1) on (S1– S2) functional of H ‘2) and E(2), respectively, which must be

minimized. Due to the completeness properties of” the

{

normal modes, it can be proven that in the limiting caseHo) –H(2) on (S2)
R~l) = when N, M tend to infinity, minimizing F>2) with respect

H(l)_; on(S1– S2) (3) to the expansion coefficients {~) of H(’) results in a
matrix equation, which is equivalent to (8). Hence, Ff2)

where SI and S2 are the cross sections of guides 1 and 2, must be minimized with respect to the expansion coeffi-
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cients V~2) of’ E ‘2). F~2) is readily proved to be given by

~=1 \ ~=1 )
where

/( )e~z)X h~j .ds = Qmiimn. (12)
s~

Differentiating F~2) with respect to Viz) (WZ= 1,2,. ... M)

and equating the result to zero, one obtains

[A~]~(2)=[~]’@ (13)

where [A ~] is an (M x M) diagonal matrix with elements
Q~, and 1(1)(1(Z)) is an N(M)-dimensional column vector

with elements 1:1)( 1~2)). Equations (8) and (13) are the

characteristic equations of the modal expansion method.

They are equivalent to, e.g., [5, eq. (3)], which has been

derived using another approach.

From the above discussion, it is easily seen that the

expansion coefficients of the fields at both sides of the

discontinuity are so adjusted that the error quantities F~l)

and F~2) are minimized. This can be viewed as “a similari-

ty balance” process, in which the fields at both sides of

the discontinuity are “similar” with respect to minimum

error quantities F~l) and F~2J. The mode coupling coeffi-

cient A.M defined by (7) represents a measure of the

degree of similarity between the nth mode of guide 1 and

the rnth mode of guide 2. Two different modes in either

guide 1 or guide 2 are then completely “dissimilar” due to

the orthogonality relations (6) and (12).

III. EFFECT OF IGNORING MODES AT EITHER SIDE

OF THE DISCONTINUITY

According to the similarity balance concept discussed

above, the n th mode excited in guide 1 (which will be

called mode (a)) is balanced by exciting a similar field in

guide 2. This similar field is, in general, composed of a

superposition of all the M modes of guide 2, the magni-

tude of each depending on its degree of similarity to mode

(a). In particular, the magnitude of a mode with a high

degree of similarity will dominate the magnitudes of the

other, less similar modes. This similarity balance holds for

each of the N modes of guide 1.
Let us assume now that the mth mode of guide 2 (which

will be called mode (b)) has the largest degree of similarity
to mode (a). Omitting mode (b) from the M modes of

guide 2 can only be compensated by increasing the magni-

tudes of modes that are less similar to mode (a), in order to

restore the similarity balance. This will disturb the modal

distributions (and hence the stored energy) at both sides of

the discontinuity. It is important to note that this dis-

turbance does not necessarily depend on how strongly

mode (a) is excited, because balancing a weakly excited

mode in guide 1 may require strongly excited modes in

guide 2 which have a very weak degree of similarity to that

mode. Omitting, however, both mode (a) and mode (b) will

have a much smaller effect on the modal distributions, in

particular, if both are just weakly excited.

(a) 0.8
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Fig. 2. Frequency response of the normalized input impedance of the
waveguide–finline junction shown in Fig, 3. (a) Normalized input
resistance. (b) Normalized input reactance.
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Fig. 3. A waveguide-finline discontinuity. Parameters: WR-28 housing;

substrate thickness = 0.254 mm; substrate dielectric constant = 2.22.

IV. EFFECT OF OVERLOOKING COMPLEX MODES ON

FINLINE DISCONTINUITIES

As has already been shown in [9], finline modes change

their nature as any of the finline parameters changes. A

pair comprising an inductive and a capacitive evanescent

mode may become a complex pair, and vice versa, as, e.g.,
the slot width changes. If we would analyze a discontinuity

using only usual (noncomplex) modes, it can happen that a

pair (or more) of modes at one side of the discontinuity is

noncomplex, while the corresponding pair at the other

side, which has the largest degree of similarity, is a com-

plex one. Both the modal distributions and the stored

energy at both sides of the discontinuity would then be

greatly affected, even if the former pair is not strongly

excited. The situation is much more favorable if both pairs

are complex, so that both would be ignored in the match-

ing process.

Another interesting effect is that of disregarding only

one mode of a pair of complex modes, while taking the
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TABLE I

MODAL ENERGY DISTRIBUTION OF THE DISCONTINUITY SHOWN IN FIG. 4 WITH AND WITHOUT TAKING COMPLEXMODESINTO ACCOUNT

(a) at finline 1

mode
1 2 3 4

order
5 6 7 8 9 10

B 0.4853
I/(mm) -]0.6209 -]1 .1519 -jl .6490 -jl .6513 -jl .7001 -]1 .7043 -]1 .8729 -jl .8770 -j2.0855

energy
w~th C.M. +0.2554 +0.0046 +0.1409 +0.0001 +0.0043 -0.1749 +0.0976 +0.(3(309 -0.0009 -0.0632

energy
w~thout -0.0003 +0.0044 +0.1204 +0.0001 +0.0033 -0.2510 +0.1377 +0.0009 -0.0008 -0.0911

14

=

15 16 18 19

-j3. 1225

+0.0030

+0.0005

:

20

-j3 .1641

-0.0012

-0.0392

H-
mode

11
order

Jr
l/(mm) -]2 .1089

12 13 17

+

-]2.5746 -j2.6949-j2. 1094 -]2 .4184 -]2.4409 -j2. 7514 -j3 .0220

E
energy

with C.M. +O. O61O

energy
without +0.0000

+0.0192 +0.0005 -0.0007 +0.0065 I -!3.0279 +0.0081 +0.0724

4H+0.0000 +0.0006 -0.0011 +0.0061 +0.0264

(b) at finline 2 /

mode
1 2 3 4

order
5- 6

I

7

*

13

I
0.7024

l/’(mm) -j O.6037 -]0.7271 -jl .5945 I-jl .6488 -] 1.6772 -]1 .7427

energy
with C.M. -0.8219 +0.0630 +0.2718 +0.0381 +0.0000 +0.0054

energy
w~thout -0.6629 +0.0879 +0.3971 +0.1023 +0.0000 +().0198

+0.0375

+0.1278

——

16

—

-]2.5318

——

+0.0002

—

+CI .0002

18 19 20

-j3. 0679 -]3. 1139 -j3.2065

+0.0(335 20.0167 -0.0153

mode

I
11

order I
12

I
13 17

8
l/(mm) –jl .9680 -]2 .3999 -j2 .4095 -,2.4667 I -,2.4745 -]2 .6976

-0.0035 +0.0181
energy

with C.M. +0.0006 I +0.0164 I -0.0174 +0.0175

energy
without I+0.0221 I+0.0058 I-0.0132 +0.0032 -0.0058 -0.0027+0.0089

Operating fr~uency = 30 GHz

other into account. As has been shown in 191,one mode of that each of these modes carries, by itself, no power. If. ..
a pair of complex modes propagates in the same direction

in which it is attenuated (let it be called mode (c)), while
the other propagates opposite to the direction in which it is

damped (let it be called mode (d)). Each carries, by itself,

neither active nor reactive power. Let us now assume that

both modes have been excited in guide 2. Mode (c) (mode

(d)) represents for guide 1 an energy loss (gain) mecha-

nism, which occurs in guide 2. Guide 1 does not “know”

mode (d) (mode (c)) is disregarded while mode (c) (mode.

(d)) is retained in the matching process, the amplitudes of
the different modes in guide 1 are adjusted to account for

the energy loss (gain), which occurs in guide 2. In other

words, guide 2 appears 10SSY(active) if it is looked at from

guide 1. The complex power, which is calculated in guide

1, takes this energy loss (gain) into account. On the other

hand, the complex power, which is calculated in guide 2,
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does not “feel” any energy loss (gain) due to the absence

of the power carried by mode (c) (mode (d)). This conse-

quently results in a discontinuity in the complex power

across the junction. This effect cannot be compared to the

truncation effect (i.e., matching finite number of modes at

both sides of the discontinuity), because continuity of

complex power is independent of the number of modes

which enter the matching process, as has been shown in

[5].

V. NUMERICAL RESULTS

In order to check the accuracy of the numerical results,

comparison to measured data in Ku-band is demonstrated

in Fig. 2, which shows the frequency response of the

resistive (Fig. n(a)) and reactive (Fig. 2(b)) parts of the

normalized input impedance of the waveguide–finline

junction shown in Fig. 3. For the two indicated cases,

convergence of the numerical results has been achieved by

using only five modes at each side of the discontinuity. For

both slot widths (S= 1.75 mm, s = 0.33 mm), the order of

the first complex modes is larger than five; hence, complex

modes have negligible influence on the numerical results

for these two cases. The reader can refer to [5] for further

information about the convergence problem.

Table I shows the stored energy distributions at both

sides of the finline discontinuity shown in Fig. 4, com-

puted with and without taking complex modes into consid-

eration. Due to the large slot width ratio (S1/S2 = 35),

convergence had to be achieved by using 20 modes at both

sides of the discontinuity. The incident field is the domi-

nant mode of finline 1 carrying unit power. The dominant

mode of finline 2 shows a standing wave pattern within the

distance 1 between the discontinuity and the open circuit.

It stores capacitive energy because 1 is slightly larger than

half a guide wavelength for this mode (1= 5.0 mm, X ~z =

8.945 mm). If complex modes are omitted, the stored

energy is calculated with an error of 19.34 percent. The

total energy, on the other hand, which is stored in both the

dominant mode and all higher order modes turns out to

amount to – 0.4059 taking complex modes into account

while it is + 0.1272 if these modes are omitted. The corre-

sponding normalized input impedance at the discontinuity y

plane is – jO.1039 with and + jO.0001 without complex

modes. The error is larger than 100 percent because the

effect of overlooking complex modes has changed the

capacitive nature of the structure between the discontinu-
ity and the open circuit into an inductive one. It should be

pointed out that this severe error is due to overlooking

only one pair of complex modes (namely the eighth and

ninth modes of finline 2), which are only weakly excited.

The error would be much more disastrous if many complex

mode pairs existed on one or both sides of the discontinu-

ity.

The frequency response of the normalized input reac-

tance of the same discontinuity (seen at the discontinuity

plane) is plotted in Fig. 5, computed with and without
complex modes. The irregularity of the curve representing

the computation without complex modes is due to the fact

I =50 mm

,, ,,7 ; ,:2,,

Fig. 4. A unilateral finline discontinuity. Parameters: as in Fig. 3,

xi

-, ~
28 30 32 34 36 38 4$3 F (GHz)

Fig. 5. Frequency response of the normahzed input reactance of the
finline discontinuity shown in Fig. 4.

that some of the modes change their nature (from complex

to noncomplex and vice versa) as the frequency changes. A

pair of complex modes which is not taken into account in

a certain frequency range may become a noncomplex pair

in another frequency range. The reader can refer to [16] for

a deeper understanding of this phenomenon. Apart from

this irregularity, a deviation of about 2.6 percent in the

resonance frequency (at which Xi = O) can be observed.

This is a crucial error for any narrow-band application.

The deviation in the upper half of the Ku-band is at least 8

percent, while the convergence of the results has been

achieved within only 1 percent.

Finally, in order to demonstrate the effect of disregard-

ing only one mode of a pair of complex modes while

taking the other into account, the structure shown in Fig. 4

(with the distance 1 being shortened to 1= 0.5 mm) has

been analyzed. The complex powers carried by the first
eight modes at both sides of the discontinuity once by

disregarding the ninth mode and once by disregarding the

eighth mode of finline 2 are tabulated in Tables II and III,

respectively. Although the structure has been assumed

lossless and passive, the complex power carried by the

dominant mode of finline 1 has an active part, which is

negative (positive) in Table H (111) in order to account for

the disappearance of the ninth (eighth) mode of finline 2.

The dominant mode of finline 2 stores capacitive energy

due to its standing wave nature between the discontinuity

and the nearby open circuit. The complex power carried
individually by the eighth and ninth modes of finline 2

vanishes as expected. The total complex powers carried by
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TABLE II

COMPLEX POWER DISTRIBUTION OF THE DISCONTINUITY SHOWN IN FIG. 4 WITH THE NINTH MODE OF FINLINE 2 DISREGARDED

(a) firdine 1

mode
1 2

order
3 4

ir 0.4853
l/(mm) -j O. 6209 -j I. 1519 -jl .6490

compl ex - 0.0230
power -:0.5002 +jo. o134 +jO .3870 +jO .0002 +jO. 0112 I -j O.4652 ] +jO.2661 I +jO.0191 I -j O.2684 I

5 6 7

(b) finline 2

mode
1 2

order
3 4 5 6 7 8 Total

13 0.7024 + 0.0073
l/(mm) -j O.6037 -j O. 7271 -]1 .5945 -jl .6488 -jl .6772 -]1 .7427 -]1 .8699

complex + 0.0000
power -]0.8674 +jO .0909 +jO .4834 +jO .2273 +jO .0000 +jO .0311 +jO .3401 +]0 .0000 +]0 .3054

Distance / shortened to 0.5 mm.

TABLE III

COMPLEXPOWERDISTRIBUTIONOF THEDISCONTINUITY SHOWNIN FIG. 4 ‘WITH THEEIGHTH MODE OFFINLINE 2 DISREGARDED

(a) finline 1

mod e
1 2 3 4 5

order
6 7 8 Total

13 0.4853
l/(mm) -j O.6209 -jl .1519 -jl .6490 -]1 .6513 -]1 .7001 -jl .7043 -jl .8729

complex + 0.0239 + 0.0239
power -30.5195 +jO .0139 +jO .4019 +]0 .0002 +]0 .0116 -]0 .4831 +]0 .2764 +]0 .0198 -]0 .2788

(b) finline 2

mode
1 2 3 4

order
5 6 7 9 Tot al

8 0.7024 - 0.0073

l/(mm) -j O. 6037 -j O.7271 -jl .5945 -jl.64E8 -]1 .6772 -jl .7427 -]1 .8699

complex + 0.0000

power -]O. 9008 +jO .0944 +]0 .5020 +jO .2360 +j0.00CIO +]0 .0323 +jO .3532 +jO. OOOO +]0 .3171

Distance I shortened to 0.5 mm.

the modes of finlines 1 and 2 are not equal, which con-

tradicts the principle of complex power continuity.
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