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The Effect of Complex Modes
at Finline Discontinuities
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Abstract —The effect of ignoring complex modes on the solution of
finline discontinuity problems is investigated. It is shown that the modal
energy distribution at both sides of the discontinuity may be greatly
affected by overlooking complex modes, even if they are not strongly
excited. It is also shown that disregarding only one mode of a pair of
complex modes, while taking the other into account, results in a contradic-
tion to the principle of complex power continuity across the discontinuity
plane. Comparison to measured data is also given to justify the validity of
the numerical results.

I. INTRODUCTION

HE ANALYSIS of discontinuities between planar

transmission lines, in particular microstrip lines and
finlines, has received increasing interest [1]-[7]. A proper
modeling of such discontinuities is of fundamental impor-
tance for any successful printed-circuit design. Only finline
discontinuity problems will be considered here. Extending
the discussion to other planar structures is, however,
straightforward.

Two rigorous approaches have been reported for the
analysis of finline discontinuity problems. The first one
depends on the transverse resonance concept (e.g., [1]-[3])-
A determination of high-order finline modes is not needed
for this approach. The problem is completely formulated
in terms of homogeneously filled rectangular (or parallel-
plate) waveguide modes in conjunction with a proper
modeling of the tangential field in the metallization plane.
This method inherently shows some disadvantages: The
effect of the discontinuity is only available with respect to
the dominant mode. No information concerning higher
order modes can be obtained. A complex discontinuity,
which is composed of a number of cascaded simple discon-
tinuities (e.g. steps in the slot width), has then to be
analyzed “as a whole.” The properties of the individual
simple discontinuities cannot, in general, be used to con-
struct an accurate solution of the complex discontinuity
due to the lack of information about high-order modes.
The “as a whole” analysis of complex discontinuities may
need a large number of basis functions to properly model
the tangential field in the plane of the fins. This leads to
dealing with oversized matrices, which greatly degrades the
numerical efficiency of the method.
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The second approach depends on the modal expansion
concept (e.g. [4]-[6]). It is an application of the method of
moments, in which both the basis and the testing functions
are the electromagnetic fields of the normal modes of
propagation at both sides of the discontinuity. Another
choice of basis and testing functions has been suggested in
[7] following the method which has been presented in [8].
In the authors’ opinion, modal fields are in general the
best choice for basis and testing functions, because they
individually satisfy the same equations (Maxwell’s equa-
tions) and boundary conditions for the expanded field.
Continuity of complex power across the discontinuity plane
and hence the unitarity of the scattering matrix are also
guaranteed in the modal expansion method, as has been
shown in [5]. Generalized scattering and /or transmission
matrices, which contain all information about the domi-
nant as well as the higher order modes, are obtained for
simple discontinuities (e.g. steps). Complex discontinuities
can be analyzed by processing the generalized scattering or
transmission matrices characterizing the individual simple
steps. The main problem in this method, then, is the
accurate determination of an approximately complete set
of finline modes.

As has already been shown [9], the singular integral
equation (SIE) technique is very efficient for determining
such a set. It has also been shown that complex modes can
be supported by finlines, so that ignoring these modes in
constructing an approximately complete set of finline
modes may lead to erroneous solutions.

The possibility of complex modes in a circular wave-
guide containing a coaxial dielectric rod were first predic-
ted in [10]. It has been shown there that the appearance of
a backward-wave mode in a certain frequency band is
associated with the appearance of complex modes in a
lower frequency band. It has also been shown that com-
plex modes can occur under certain conditions even if
there is no frequency range in which backward-wave modes
can propagate. More theoretical and experimental inves-
tigations on complex modes in dielectric-loaded circular
waveguides have been reported, e.g. in [11]-[14].

Complex modes in a shielded rectangular dielectric image
guide, which can be considered as a rectangular waveguide
with a rectangular dielectric insert, have been reported in
[15] and [16]. We have recently shown that complex modes
can exist in finhnes [9], [17].

This paper addresses the effect of overlooking complex
modes on the solution of finline discontinuity problems.
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Fig. 1. A boundary-reduction discontinuity between two general wave-

guides.

II.  Basic FORMULATION

The formulation of the modal expansion method is well
documented in the literature and can be found in, e.g., [18]
and [19] for homogeneously filled waveguides and in [5]
for inhomogeneously filled waveguides. The describing
equations can be equally obtained as a result of mini-
mizing certain error quantities, as will be shown in the
following. \

Consider the boundary reduction discontinuity which is
shown in Fig. 1. Waveguides 1 and 2 are assumed to be
quite general, except for the restriction that both have
discrete modal spectra; this simplifies the discussion to
some extent, because all field expansions include in this
case only summations and no integrations. Expanding the
transverse fields of guides 1 and 2 at the discontinuity
plane z = z, with respect to N-d/imensional and M-dimen-
sional sets, respectively, of their modes results in

N
1) _ 1), (1
ED= Z Vn()er(z)
n=1

N
HY = Z Irfl)hﬁzl)

n=1

(1)

M
E@= Y 7®e®

m=1.

M
HO= Y [Op®

m=1

@)

where e’(hD) and eP(h?) are the transverse electric
(magnetic)-field vectors of the nth mode in guide 1 and the
mth mode in guide 2, respectively, and V,¥, I®, V', and
I® are expansion coefficients. Looking from side 1, the
errors RYD and R{Y in the electric and magnetic fields,
respectively, are given by

RO = ED—E® on(S,)
¢ E® on ($,-35,)
RO = HY—H® on(S,)
" HO -, on ($;—S,) (3)

where S; and S, are the cross sections of guides 1 and 2,
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respectively, and J; is the induced surface current at
(S;—S,). Two error quantities F» and F can now be
defined as

FO= [ (RO x HDY. ds

e ‘/;1( e )

F,,<1>=f (E® x RY).- ds. (4)
S

1

The error quantity F" contains the unknown surface
current J,, and hence will not be used, in order not to
increase the number of unknowns. The error quantity F@
can be regarded as a functional of H® which must be
minimized. This means that the expansion coefficients 7V
of HY must be adjusted in order to minimize FV.
Substituting (1) and (3) intc (4) and carrying out the
necessary integrations, one obtains

N M
Fe(l) = Z Irgl) PnI/n(I) - E AannSZ) (5)
n=1 m=1
where
f (e xn®)-ds=Pg,, (6)
5
[ (e@xhD)-ds= 4, (7)
S,
and §,, is the Kronecker delta. Performing the usual

Fourier expansion procedure by differentiating F with
respect to IV (n=1,2,---, N) and equating the result to
Zero, one obtains

[A, VO =[4]y® (8)
where [A ] is an (N X N) diagonal matrix with elements
P,; [A]is an (N X M) matrix with elements 4,,; and V'®
(V@) is an N(M)-dimensional column vector with ele-
ments V,O(V,9),

Looking from side 2, the errors in the electric and
magnetic fields are given by

RO=FO_F®
€

RP=H®-HO. 9)
Again, two error quantities can be defined, namely
F® = f (RO x H®)-ds
e S2
FP= [ (E®XRY)-ds. (10)
s;

2

The error quantities F® and F® can be regarded as
functionals of H® and E®, respectively, which must be
minimized. Due to the completeness properties of the
normal modes, it can be proven that in the limiting case
when N, M tend to infinity, minimizing F® with respect
to the expansion coefficients I? of H® results in a
matrix equation, which is equivalent to (8). Hence, F®
must be minimized with respect to the expansion coeffi-
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cients V@ of E@. F® is readily proved to be given by

M N
FP= Y V,S,Z)(me,f)— Y Ay, L0 (11)

m=1 n=1

where
(12)

Differentiating F® with respect to V¥ (m=1,2,---, M)
and equating the result to zero, one obtains

[Ap|I@=[A4]'T® (13)

where [A ] is an (M X M) diagonal matrix with elements
Q,,, and IO @) is an N(M)-dimensional column vector
with elements I®M(I?). Equations (8) and (13) are the
characteristic equations of the modal expansion method.
They are equivalent to, e.g., [5, eq. (3)], which has been
derived using another approach.

From the above discussion, it is easily seen that the
expansion coefficients of the fields at both sides of the
discontinuity are so adjusted that the error quantities F.
and F® are minimized. This can be viewed as “a similar-
ity balance” process, in which the fields at both sides of
the discontinuity are “similar” with respect to minimum
error quantities FV and F®. The mode coupling coeffi-
cient A4,, defined by (7) represents a measure of the
degree of similarity between the nth mode of guide 1 and
the mth mode of guide 2. Two different modes in either
guide 1 or guide 2 are then completely “dissimilar” due to
the orthogonality relations (6) and (12).

[ (@ xn3)-ds=0,3,,

2

III. EFFECT OF IGNORING MODES AT EITHER SIDE
OF THE DISCONTINUITY

According to the similarity balance concept discussed
above, the nth mode excited in guide 1 (which will be
called mode (a)) is balanced by exciting a similar field in
guide 2. This similar field is, in general, composed of a
superposition of all the M modes of guide 2, the magni-
tude of each depending on its degree of similarity to mode
(a). In particular, the magnitude of a mode with a high
degree of similarity will dominate the magnitudes of the
other, less similar modes. This similarity balance holds for
each of the N modes of guide 1.

Let us assume now that the mth mode of guide 2 (which
will be called mode (b)) has the largest degree of similarity
to mode (a). Omitting mode (b) from the M modes of
guide 2 can only be compensated by increasing the magni-
tudes of modes that are less similar to mode (a), in order to
restore the similarity balance. This will disturb the modal
distributions (and hence the stored energy) at both sides of
the discontinuity. It is important to note that this dis-
turbance does not necessarily depend on how strongly
mode (a) is excited, because balancing a weakly excited
mode in guide 1 may require strongly excited modes in
guide 2 which have a very weak degree of similarity to that
mode. Omitting, however, both mode (a) and mode (b) will
have a much smaller effect on the modal distributions, in
particular, if both are just weakly excited.
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Fig. 2. Frequency response of the normalized input impedance of the
waveguide—finline junction shown in Fig. 3. (a) Normalized input
resistance. (b) Normalized input reactance.
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Fig. 3. A waveguide—finline discontinuity. Parameters: WR-28 housing;
substrate thickness = 0.254 mm; substrate dielectric constant = 2.22.

I1V. EFFECT OF OVERLOOKING COMPLEX MODES ON
FINLINE DISCONTINUITIES

As has already been shown in [9], finline modes change
their nature as any of the finline parameters changes. A
pair comprising an inductive and a capacitive evanescent
mode may become a complex pair, and vice versa, as, e.g.,
the slot width changes. If we would analyze a discontinuity
using only usual (noncomplex) modes, it can happen that a
pair (or more) of modes at one side of the discontinuity is
noncomplex, while the corresponding pair at the other
side, which has the largest degree of similarity, is a com-
plex one. Both the modal distributions and the stored
energy at both sides of the discontinuity would then be
greatly affected, even if the former pair is not strongly
excited. The situation is much more favorable if both pairs
are complex, so that both would be ignored in the match-
ing process.

Another interesting effect is that of disregarding only
one mode of a pair of complex modes, while taking the
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TABLE 1
MopaL ENERGY DISTRIBUTION OF THE DISCONTINUITY SHOWN IN FIG. 4 WITH AND WITHOUT TAKING COMPLEX MODES INTO ACCOUNT

(a) at finline 1

mode '
ordar 1 2 3 4 5 6 7 8 9 10
8 0.4853
1/ (mm) -30.6209 }-31.1519 |-31.6490 | -31.6513 |{-31.7001 |-71.7043 | -31.8729 |-31.8770 |-52.0855
energy
with C.M.| +0.2554 | +0.0046 | +0.1409 | +0.0001 | +0.0043 | -0.1749 | +0.0976 | +0.0009 | -0.0009 | -0.0632
energy
without | =0.0003 | +0.0044 | +0.1204 | +0.0001 | +0.0033 | -0.2510 | +0.1377 | +0.0009 | -0.0008 | -0.0911
-
mode
ooy 11 12 13 14 15 16 17 18 19 20
B N
1/(mm)  |-72.1089 [-32.1094 |[-32.4184 |-72.4400 {-32.5746 |[~32.6949 |=-32.7514 |-33.0220 |-33.1225 [-33.1641
energy
with C.M.| +0.0610 | +0.0192 | +0.0005 | -0.0007 | +0.0065 | -0.0279 | +0.0081 | +0.0724 | +0.0030 | -0.0012
energy
without | +0.0000 | +0.0000 | +0.0006 | -0.0011 | +0.0037 | -0.0458 | +0.0061 | +0.0264 | +0.0005 | -0.0392
(b) at finline 2 .
-
mode 1 2 3 4 5- 6 7 8 9 10
order
3 0.7024 0.0073 |-0.0073
1/ (rm) ~30.6037 [-30.7271 | -31.5945 | -91.6488 |{~31.6772 |-71.7427 |-31.8699 |-31.8699 |-71.8886
energy
with C.M.| -0.8219 | +0.0630 | +0.2718 | +0.0381| +0.0000 | +0.0054 | +0.0375 | -0.0008 | -0.0008 | -0.0016
energy
without | -0.6629 | +0.0879 | +0.3971 [ +0.1023 | +0.0000 | +0.0198 | +0.1278 | ——---oc | —=oee—n -0.0000
mode 11 12 13 14 15 16 17 18 19 20
order
. .
1/(mm) |-31.9680 | -72.3999 [-92.4095 | -72.4667 | -72.4745 |-72.5318 |-32.6976 |-33.0679 |-33.1139 |-33.2065
energy
with C.M.| +0.0006 | +0.0164 | -0.0174 | -0.0035 | +0.0181 | +0.0002 | +0.0175 | +0.0035 | =0.0167 | -0.0153
energy }
without | +0.0221 | +0.0058 | -0.0132 { =-0.0053 | +0.0022 | +0.0002 | +0.0089 | +0.0032 | -0.0058 | -0.0027

Operating frequency = 30 GHz.

other into account. As has been shown in [9], one mode of
a pair of complex modes propagates in the same direction
in which it is attenuated (let it be called mode (c)), while
the other propagates opposite to the direction in which it is
damped (let it be called mode (d)). Each carries, by itself,
neither active nor reactive power. Let us now assume that
both modes have been excited in guide 2. Mode (¢) (mode
(d)) represents for guide 1 an energy loss (gain) mecha-
nism, which occurs in guide 2. Guide 1 does not “know”

that each of these modes carries, by itself, no power. If
mode (d) (mode (c)) is disregarded while mode (c) (mode
(d)) is retained in the matching process, the amplitudes of
the different modes in guide 1 are adjusted to account for
the energy loss (gain), which occurs in guide 2. In other
words, guide 2 appears lossy (active) if it is looked at from
guide 1. The complex power, which is calculated in guide
1, takes this energy loss (gain) into account. On the other
hand, the complex power, which is calculated in guide 2,
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does not “feel” any energy loss (gain) due to the absence
of the power carried by mode (¢) (mode (d)). This conse-
quently results in a discontinuity in the complex power
across the junction. This effect cannot be compared to the
truncation effect (i.e., matching finite number of modes at
both sides of the discontinuity), because continuity of
complex power is independent of the number of modes
which enter the matching process, as has been shown in

[5].
V. NUMERICAL RESULTS

In order to check the accuracy of the numerical results,
comparison to measured data in Ka-band is demonstrated
in Fig. 2, which shows the frequency response of the
resistive (Fig. 2(a)) and reactive (Fig. 2(b)) parts of the
normalized input impedance of the waveguide—finline
Junction shown in Fig. 3. For the two indicated cases,
convergence of the numerical results has been achieved by
using only five modes at each side of the discontinuity. For
both slot widths (s =1.75 mm, s = 0.33 mm), the order of
the first complex modes is larger than five; hence, complex
modes have negligible influence on the numerical results
for these two cases. The reader can refer to [5] for further
information about the convergence problem.

Table 1 shows the stored energy distributions at both
sides of the finline discontinuity shown in Fig. 4, com-
puted with and without taking complex modes into consid-
eration. Due to the large slot width ratio (s, /s, = 35),
convergence had to be achieved by using 20 modes at both
sides of the discontinuity. The incident field is the domi-
nant mode of finline 1 carrying unit power. The dominant
mode of finline 2 shows a standing wave pattern within the
distance / between the discontinuity and the open circuit.
It stores capacitive energy because !/ is slightly larger than
half a guide wavelength for this mode (/= 5.0 mm, A g2 =
8.945 mm). If complex modes are omitted, the stored
energy is calculated with an error of 19.34 percent. The
total energy, on the other hand, which is stored in both the
dominant mode and all higher order modes turns out to
amount to —0.4059 taking complex modes into account
while it is +0.1272 if these modes are omitted. The corre-
sponding normalized input impedance at the discontinuity
plane is — j0.1039 with and + ;0.0001 without complex
modes. The error is larger than 100 percent because the
effect of overlooking complex modes has changed the
capacitive nature of the structure between the discontinu-
ity and the open circuit into an inductive one. It should be
pointed out that this severe error is due to overlooking
only one pair of complex modes (namely the eighth and
ninth modes of finline 2), which are only weakly excited.
The error would be much more disastrous if many complex
mode pairs existed on one or both sides of the discontinu-
ity.

The frequency response of the normalized input reac-
tance of the same discontinuity (seen at the discontinuity
plane) is plotted in Fig. 5, computed with and without
complex modes. The irregularity of the curve representing
the computation without complex modes is due to the fact
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Fig. 5. Frequency response of the normalized input reactance of the
finline discontinuity shown in Fig. 4.

that some of the modes change their nature (from complex
to noncomplex and vice versa) as the frequency changes. A
pair of complex modes which is not taken into account in
a certain frequency range may become a noncomplex pair
in another frequency range. The reader can refer to [16] for
a deeper understanding of this phenomenon. Apart from
this irregularity, a deviation of about 2.6 percent in the
resonance frequency (at which X;=0) can be observed.
This is a crucial error for any narrow-band application.
The deviation in the upper half of the Kg-band is at least 8
percent, while the convergence of the results has been
achieved within only 1 percent.

Finally, in order to demonstrate the effect of disregard-
ing only one mode of a pair of complex modes while
taking the other into account, the structure shown in Fig. 4
(with the distance / being shortened to /= 0.5 mm) has
been analyzed. The complex powers carried by the first
eight modes at both sides of the discontinuity once by
disregarding the ninth mode and once by disregarding the
eighth mode of finline 2 are tabulated in Tables I and III,
respectively. Although the structure has been assumed
lossless and passive, the complex power carried by the
dominant mode of finline 1 has an active part, which is
negative (positive) in Table II (III) in order to account for
the disappearance of the ninth (eighth) mode of finline 2.
The dominant mode of finline 2 stores capacitive energy
due to its standing wave nature between the discontinuity
and the nearby open circuit. The complex power carried
individually by the eighth and ninth modes of finline 2
vanishes as expected. The total complex powers carried by
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TABLE I1
CompPLEX POWER DISTRIBUTION OF THE DISCONTINUITY SHOWN IN FIG. 4 WITH THE NINTH MODE OF FINLINE 2 DISREGARDED
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(a) finline 1
d
I(I:tl(lzc.‘(Zr t 2 3 4 5 6 7 8 Total
8 0.4853
1/ {mm) -j0.6209 | -31.1519 | -31.6490 | -31.6513 | ~-31.7001 | -31.7043 | -31.8729
complex - 0.0230 - 0.0230
power -§0.5002 [ +90.0134 | +30.3870 | +30.0002 | +3j0.0112 | -j0.4652 [ +30.2661 | +30.0191 | -30.2684
(b) finline 2
d
zgdir 1 2 3 4 5 6 7 8 Total
B 0.7024 + 0.0073
1/{mm) ~30.6037 | -3j0.7271 | -31.5945 | -j1.6488 | -31.6772 | -31.7427 | -31.8699
complex + 0.0000
power ~30.8674 | +30.0909 | +3j0.4834 [ +30.2273 | +30.0000 | +30.0311 | +30.3401 | +30.0000 [ +30.3054
Distance / shortened to 0.5 mm.
TABLE III
CoMPLEX POWER DISTRIBUTION OF THE DISCONTINUITY SHOWN IN FIG. 4 WITH THE EIGHTH MODE OF FINLINE 2 DISREGARDED
(a) finline 1
mode 1 2 3 4 5
order 6 7 8 Total
8 0.4853 .
1/ (mm) -30.6209 | -31.1519 | -3j1.6490 | -31.6513 | -31.7001 | -31.7043 | -3j1.8729
complex + 0.0239 + 0.0239
power -30.5195 | +30.0139 | +30.4019 | +30.0002 | +30.0116 | -30.4831 | +30.2764 | +30.0198 | -30.2788
(b) finline 2
mode 1 2 3 4 5 6 7 9 Total
order ota
8 0.7024 - 0.0073
1/ (mm) -30.6037 | -30.7271 | -31.5945 | -31.6488 | -31.6772 | -j1.7427 | -31.8699
complex + 0.0000
power -70.9008 | +30.0944 | +30.5020 | +30.2360 | +30.0000 | +30.0323 | +30.3532 | +3j0.0000 | +30.3171
Distance / shortened to 0.5 mm.
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